Al and Machine Learning in Online Advertising

An Overview from 30,000 Feet

Agenda

Market Scale and Historical Context

Where ML/AI Plays in Online Ads

ML/AI for DSP Ad Retrieval

Conclusion

Online Advertising Market Landscape

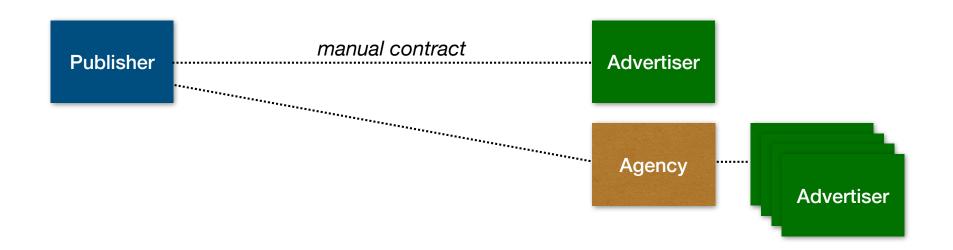
- Global Market Size (2025 Estimate): ~\$740B (source: eMarketer)
- Major Segments
 - Search Advertising
 - Retail / Commerce Media
 - Display Advertising
 - CTV
 - Social Media Ads
- Estimated Breakdown (eMarketer, et. al.)
 - Retail Media / Commerce Ads: 20-25%, ~\$160B
 - Non-Retail Search Ads: 20-25%, ~ \$160B
 - Display / Social / Other (CTV): 50-60%, ~\$420B

Historical Evolution

- 1990s: Banners, early search ads (Yahoo!, Altavista)
- 2000s: Google AdWords CPC, measurable ROI
- 2010s: Programmatic buying, Real-time Bidding (RTB)
- 2020s: Privacy-first Era—retail media, contextual Al

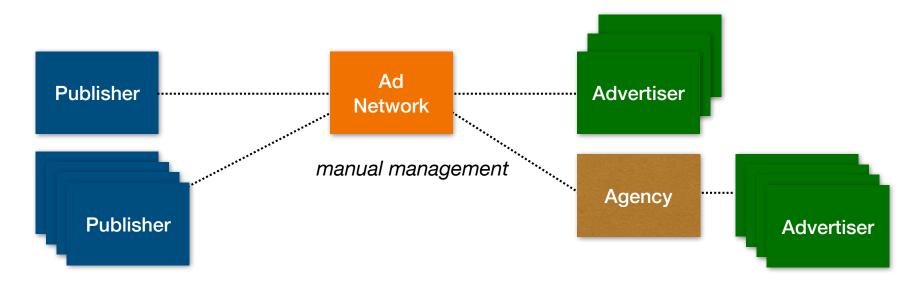
Direct-Sales Online Ads (1990s-early 2000s)

- In the early days, publishers (e.g., Yahoo, AOL) sold banner ads directly to advertisers or agencies.
 - Manual deal contracts
 - CPM (Cost Per Mille = 1K impressions)
- Characteristics
 - Limited targeting (contextual—based on the site's them)
 - Manual workflow: sales teams, insertion orders
 - High barriers for small advertisers (high upfront)



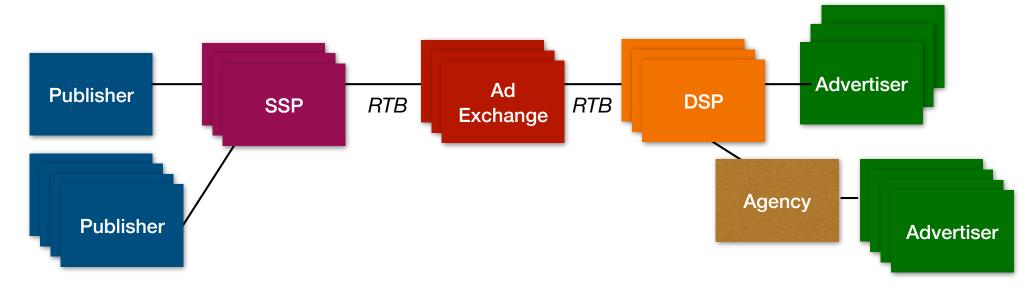
Ad Networks (2000s)

- Problems
 - Publishers had unsold "remnant" inventory, and advertisers wanted cheaper scale across many sites
- Solution
 - Ad networks aggregated inventory from multiple publishers and sold it in bulk
- Characteristics
 - More efficient than 1:1 direct deals
 - Some basic targeting (e.g., demographics, categories)
 - Black-box pricing and transparency issues



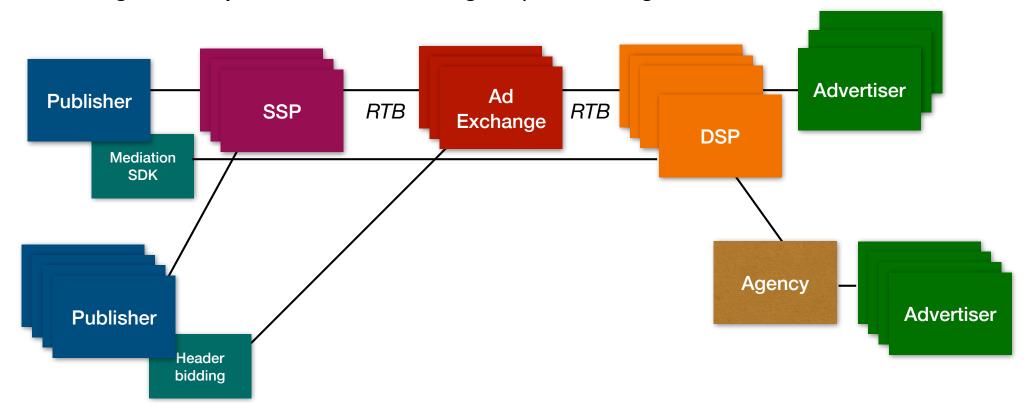
Ad Exchanges, DSPs, and SSPs (late 2000s-)

- Ad Exchanges: Marketplaces where ad impressions are auctioned in real time.
 - Enabled real-time bidding (RTB) at impression level instead of bulk manual buys
 - e.g., Google AdX, InMobi, Magnite, PubMatic, etc.
- Supply-Side Platforms (SSPs): Help publishers connect inventory to multiple exchanges and maximize yield
 - e.g., Google Ad Manager, (Google AdMob), Magnite, PubMatic, etc.
- Demand-Side Platforms (DSPs): Help advertisers and agencies buy inventory programmatically across exchanges.
 - Enable advanced targeting using data (cookies, ADIDs, behavioral signals)
 - e.g., The Trade Desk, Moloco, etc.



Mediation & Header Bidding (mid 2010s-)

- Mediation Platforms: Especially in mobile apps, SDK mediation allowed publishers to plug in multiple ad networks/SSPs so that each impression could be auctioned to the highest bidder.
 - e.g.,AppLovin MAX, ironSource, Google AdMob mediation, etc.
- **Header bidding:** Especially in web, publishers added code to their sites allowing multiple exchanges to bid simultaneously before the ad server decided the winner.
 - e.g., Prebid.js, Amazon TAM, Google Open Bidding, etc.



OpenRTB

- Now, Online Ads is "Programmatic"
 - OpenRTB is a standardized protocol for programmatic ad buying and selling
 - Created by IAB Tech Lab (Interactive Advertising Bureau)
 - To enable seamless communication between DSPs, SSPs, and Ad Exchanges for real-time ad auctions.
 - v 1.0: Feb, 2011
 - v 2.6: Sep, 2023
- Key Benefits
 - Standardization: consistent format across all partners
 - Transparency: common auction rules and bid attributes
 - Efficiency: reduces integration time
 - Extensibility: supports video, native, app, and CTV formats

Where ML/Al Plays?

- Basically, we will use ML/AI to match the "Best" user and campaign.
 - Supply Side (Publisher and SSP): to maximize yield
 - Exchange: for efficiency
 - Demand Side (DSP and Advertiser): to maximize ROI

Where ML/Al Plays?: Publisher

- Goals: Maximize yield, maintain content relevance, ensure brand safety
 - Content classification (CV/NLP): detect ad-appropriate or brandsafe content.
 - Ad layout optimization: predict best-performing placements per user/ session.
 - User engagement prediction: forecast scroll depth, dwell time -> refine inventory value
 - Fraud detection: identify invalid traffic patterns using anomaly models

Where ML/Al Plays?: SSP

- Goals: Maximize publisher revenue while maintaining efficiency and transparency
 - Bid landscape forecasting: predict expected bid ranges to guide floor pricing
 - Auction optimization: use ML to choose between header bidding, direct deals, programmatic guaranteed, private auctions, or open auctions.
 - Traffic quality scoring: detect low-quality impressions or click fraud
 - Latency prediction: optimize routing between exchanges and demands to meet SLA.
 - Ad quality filtering: CV/NLP to block offensive creatives

Where ML/Al Plays?: Ad Exchange

- Goals: Fair, fast, and efficient auction across buyers and sellers
 - Auction dynamics simulation: predict clearing prices under different auction types
 - **Bid shading:** estimate second-price vs. first-price bid adjustment for DSPs.
 - Fraud/anomaly detection: detect unusual bidding patterns or replay attacks
 - Latency optimization: predict network and compute cost to meet
 <100ms SLA

Where ML/Al Plays?: DSP

- Goals: Maximize ROI for advertisers through efficient targeting, bidding, and creative
 - Retrieval: candidate ad selection using embedding similarity
 - Ranking: CTR/CVR/ROI prediction with DNN models
 - Budget pacing: predictive control to spend evenly or aggressively by performance
 - Bid shading: estimate second-price vs. first-price bid adjustment for DSPs.
 - Creative optimization: A/B and multi-armed bandit for headline/image variations
 - User modeling: sequence models (RNN/Transformers/GNN) for behavior and intent prediction

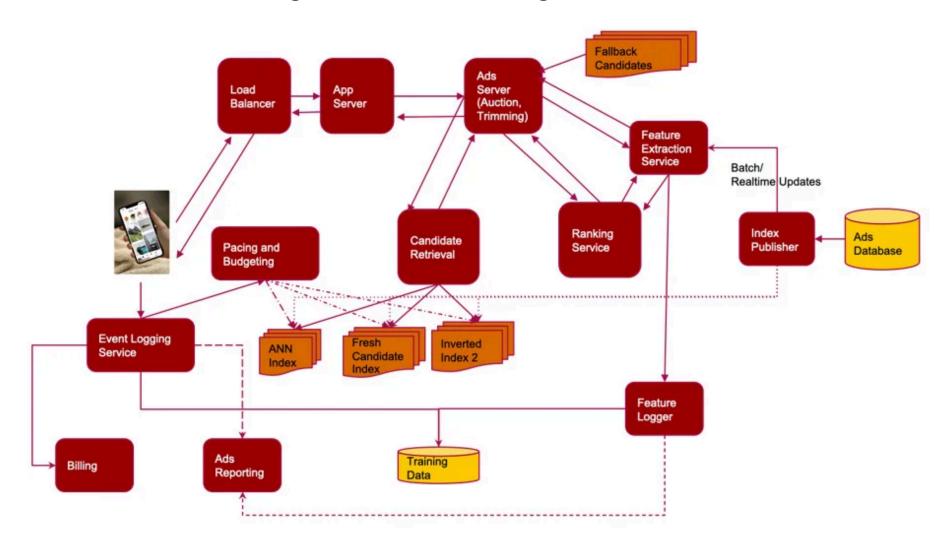
Where ML/Al Plays?: Advertiser

- Goals: Reach the right users with the right message at optimal cost
 - Audience segmentation: cluster users by intent, demographics, LTV
 - Attribution modeling: data-driven contribution analysis
 - Media mix modeling: regression/causal ML to allocate spend across channels
 - Creative generation: LLMs, diffusion models for personalized copy or images
 - Performance prediction: forecast campaign ROI and LTV
 - Brand lift analysis: statistical inference models on awareness & recall metrics

e.g., DSP—Retrieval

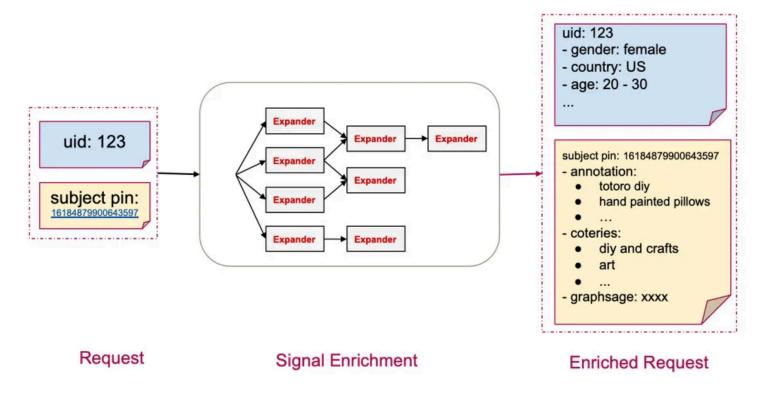
"Unpacking How Ad Ranking Works at Pinterest," Anthony Alford https://www.infoq.com/articles/pinterest-ad-ranking-ai/

Pinterest Ads Serving Infrastructure High Level Overview



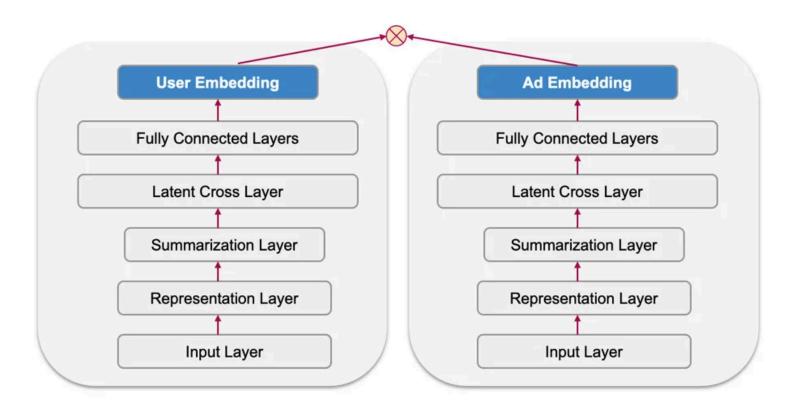
e.g., DSP—Retrieval (cont'd)

- Retrieval: to select the best ads candidate with the best efficiency—uses very lightweight ML model
- Signal Enrichment
 - uses several graph-based expanders to fetch extra features from key-value feature stores



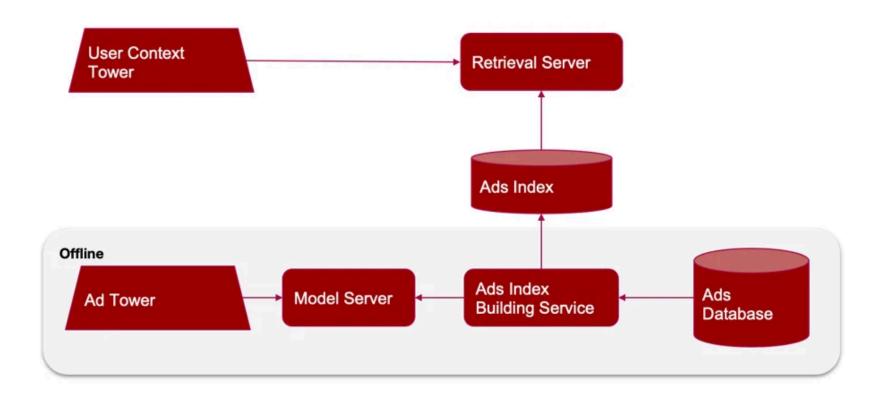
e.g., DSP-Retrieval (cont'd)

- Two-Tower Model
 - separate user and item information.



e.g., DSP-Retrieval (cont'd)

Retrieval Serving Architecture



Conclusion—The Landscape Ahead

- From RTB to Everywhere
 - The RTB transformed online advertising into a fully programmatic ecosystem.
 - Every impression is a mini marketplace where algorithms decide what ad to show, how much to bid, and to whom.
- No One-Size-Fits-All Solution
 - There is no boilerplate template for how ML/Al should be applied in advertising.
 - Each participant (publisher, SSP, exchange, DSP, advertiser) faces different objectives, constraint, and data realities.
- The Future
 - Programmatic advertising is no longer about automation—it's about intelligent decision-making at scale (and realtime).
 - The next decade belongs to adaptive, transparent, and humanaligned Al in advertising